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Abstraa The saddle point van  Hove singularity ha6 a topological interpmtation in terms of 
a switching of electron orbits from electron like to hole like. This orbital switching bears 
some resemblance to magnetic breakdown. but is clearly a distinct phenomenon. The tunnelling 
probability for orbital switching is calculated. md the results compared to magnetic breakdown. 
Just as in magnetic beakdown. the elecuonic orbits can form a yuanfum cokwent network in 
the presence o f  finite orbit switching. 

1. Introduction 

The saddle point van Hove singularity (vHs) of a two-dimensional electronic band has been 
implicated as a possible cause for high-temperature superconductivity [ 1-61, Here, I discuss 
a novel topological characteristic of the vHs, which can have an important effect on many of 
its physical properties. The vHs acts as an orbital swirch, causing electrons to switch over 
from one orbit to a distinct one. Precisely at the vHs, the probability of remaining on the 
same orbit and the probability of switching orbits are both equal to one half. 

In the semiclassical picture, the switching probability jumps discontinuously from zero 
to one as the Fermi level passes the switching orbit. This picture must be corrected by the 
inclusion of tunnelling processes, which can couple the orbits even when the Fermi level 
is not precisely at the switching point. Such tunnelling will be present in zero magnetic 
field, assisted by phonons. However, the resulting strong electron-phonon coupling makes 
!he tunnelling process difficult to analyse. In this paper, I will study the simpler process 
of magnetic-field-enhanced tunnelling, and only in the final section make some remarks on 
phonon-enhanced tunnelling. 

Field-enhanced orbital switching bears a certain resemblance to conventional magnetic 
breakdown [7-91, a resemblance which can be utilized to simplify many of the calculations. 
However, there is a distinction between orbital switching and magnetic breakdown, which 
can be best understood by analysing a quasi-one-dimensional (quasi-ID) example. Figure 
1 illustrates a series of Fermi surfaces, at increasing values of energy, for a nearly free 
electron model of a material with a rectangular unit cell. The Fermi surface is fundamentally 
a circular orbit, but when the orbit intersects the Brillouin zone boundary, the electron is 
Bragg scattered, opening up a gap of magnitude VO. As a result of this scattering, the 
consecutive circular orbits are linked into a pair of open orbits (figure I(c)). At higher 
energies, the portion of the circle which has overlapped into the next Brillouiu zone emerges 
as a new, lens-shaped orbital (figure l(d)). The Fermi surfaces of figure l(d) are commonly 
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used as an elementary example for studying magnetic breakdown [7-91. At low transverse 
magnetic fields, the electrons are confined to cyclotron orbits coinciding with the solid lines 
of figure l(d). However, for sufficiently strong fields, the Bragg scattering gap will he a 
small perturbation, and the electron will follow the keeelectron circular orbit (dashed line 
in figure I(d)). The crossover between the two orbits is magnetic breakdown. Note that 
it involves Zener tunnelling between two separate bands, the first-zone open orbit and the 
second-zone lens orbit [9-111. 

On the other hand, orbital switching can be understood with reference to figure l(a)-(c). 
Note that an electron that startS at point A with energy E,  (figure I(a)) will end up at point B 
with essentially 100% probability, but with energy .EE (figure l(c)) it will end up at point C 
with the same probability. Since the bands evolve smoothly in a one-electron picture, there 
will be an intermediate energy, & (figure l(b)) at which the Fermi surface just touches the 
Brillouin zone boundary. At this energy, an electron at point A has a finite probability of 
ending up at either point B or point C. In a semi-classical picture, the probability P = 
of switching from the branch containing point A to branch B would be unity for all E < Eh 
and zero for all E > Eb (with Q = [q [*  = 1 - P the probability of switching from A to 
C). Now the quantum mechanical probability cannot change discontinuously: clearly, when 
E is less than, but close to &, there will be a finite probability of tunnelling through the 
barrier to branch C. This tunnelling amplitude will be calculated in subsection 2.1. Since 
P varies smoothly, the switching point E b  can be defined more precisely as that point at 
which P = Q = 0.5. 

Figure 1. Switching and magnetic breakdown orbits for a linear system (e.g., a materid with 
a rectangular uoit cell with one long side). (a)-(d) show the m e  four cells with successively 
larger Fermi surfaces (more electrons]. 

Note the distinctions between orbit switching and magnetic breakdown. First, magnetic 
breakdown always involves tunnelling through a finite gap, and hence requires a finite 
magnetic field (E BO, the breakdown field). On the other hand, exactly at the switching 
point, the tunnelling barrier is zero, so the switching can occur even at zero field. In the 
calculation of subsection 2.1, the magnetic field will be used to produce electrons with the 
appropriate velocity to approach the switching point. Any other mechanism of providing 
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Figure 2. Switching and magnetic bmkdown orbits for a two-dimensional system. 

the electron with the appropriate velocity (e.g., collision with a thermal phonon or another 
electron) can initiate the switching event. 

Another distinction is that orbit switching involves tunnelling between different parts of 
a single band, whereas magnetic breakdown couples orbits in two different bands. Because 
of this, the tunnelling calculation of subsection 2.1 will be distinct from the usual Blount 
calculation [9] of magnetic breakdown tunnelling. It should be noted that at the switching 
point, there is also a contribution to the tunnelling due to second-order magnetic breakdown: 
the electron on branch A can virtually tunnel to the bottom of the lens orbit band, at energy 
E b  + V,, and then tunnel back down to branch C. The probability for this process will be 
estimated in subsection 2.2 and appendix B. It will be found that near the switching point, 
the probability of such conventional magnetic breakdown is actually suppressed below the 
usual Blount value, and hence can safely be neglected. 

Figure 2 shows a two-dimensional version of the same processes. Although this is a 
nearly free electron model, the Fermi surfaces, particularly in figure 2(a)-(c), bear a close 
resemblance to the LDA and the tight-binding model approximation to the Fermi surfaces 
of the high-temperature superconductors, particularly Laz-,SrxCu04 (LSCO). While the lens 
orbits do not arise in the usual three-band model of the CUOZ planes, the second zone 
orbital would correspond, in a tight-binding picture, to the Cu d3+rz orbital. Clearly, the 
VHS corresponds to the orbital switching point (figure 2(b)). 

2. Calculation of the switching amplitude 

2.1. Orbit switching 

The effect of a saddle point vHs on Landau levels, and the corresponding transmission 
coefficient (orbital switching probability) have been calculated by several authors [ 12-14]. 
Here a simple derivation is presented, leading to a result particularly similar in form to 
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that of Fertig and Halperin (FH) [14]. Following Onsager's semiclassical approach [15], 
in the absence of scattering, an electron in a magnetic field travels in a cyclotron orbit in 
k-space along a section of Fermi surface perpendicular to the magnetic field direction. The 
real-space orbit is in the same plane and has the same shape, but is rotated by 90" and 
scaled by a factor I :  5 RcjeB, 

r - ro = -l$ x ( I C  - ko) (1) 

where TO (b) is the orbit centre in real (k) space. 

Figure 3. (a) A contour map of real-space magnetic orbitals corresponding to successively 
larger Fermi surfaces near a switching point. The dashed lines show the second band. (b) A 
cross-section oflhe contour map. The double lines are cuts through the surface, corresponding to 
the dotted lines in (a). The dashed line is tunnelling corresponding to orbit switching; the dolted 
line is a competing tunnelling path via conventiond magnetic breakdown. (c) A single-energy 
contour wrresponding to magnetic bre&down tunnelling (dotted line) in (b). 

For studying magnetic breakdown, Pippard [SI has shown that it is convenient to look 
at the real-space Fourier transform of the full, extended zone scheme-Pippard's 0-lattice. 
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Figure 3(a) shows this real-space transform of two cells from figure 2. This figure shows 
a series of real-space trajectories of electrons in a fixed magnetic field, for various values 
of the energy E.  Note that two bands are illustrated, the ‘lens orbits’ (shown as dashed 
lines) lying below the first band (solid lines). Figure 3(b) is an expanded view of the 
orbits near one v ~ s ,  corresponding to a cut through the energy surface (the double lines in 
figure 3(b) correspond to the dotted lines in figure 3(a)). Figure 3(b) illustrates two possible 
tunnelling paths which connect discontinuous orbits of the first band (thick solid lines). The 
dotted path is the usual. interband (Landau-Zener tunnelling) magnetic breakdown. The 
dashed curve illustrates the intraband tunnelling associated with a switching orbit. Both 
tunnelling processes will take place in parallel. For the energy level illustrated in figure 
3(b) (lens orbit at the Fermi level, figures l(d), 2(d)), conventional breakdown will probably 
predominate, since the double tunnelling into and out of the second band involves a shorter 
tunnelling path. However, when the energy level approaches closer to the switching point 
(lens orbit below Fermi level, figures l(b), (c), 2(b), (c)), the new intraband switching 
will win out. This latter situation is analysed in the present section, saving conventional 
magnetic breakdown for subsection 2.2. 

The switching involves tunnelling from the initial branch i to the ‘transmitted’ wave 
(figure l(b)), with probability amplitude p ,  or continuation onto the reflected branch, with 
amplitude q.  The tunnelling problem is thus quasi-lo, and can be solved using a WKB 
barrier penetration approach. The transmission amplitude can be written 

with E(k, = kxo, ky = 0) = EF. Near the vHs, the energy can be written 

h2 2 2 E ( k )  - E, = y ( k x  - k,) 
2m (3) 

where E, is the energy at the vHs (appendix A). Substituting equation (3) (with ky = 0) into 
equation (2b), the integral can be evaluated, yielding 

where E, = E,  - EF and U, = eBjm‘c, the cyclotron frequency. Thus, the barrier 
transmission probability P = IpIz will become significant when hoc > E,. This was the 
criterion originally introduced for significant magnetic breakdown by Cohen and Falicov 
[7]. Subsequently, Blount [9] showed that for interband tunnelling the breakdown criterion 
is actually more favourable, 

In the present circumstance, however, E,  vanishes at the VHS. whereas VG remains large, so 
at low fields, the present tunnelling, equation (4), will dominate. 

The above WKB approximation implicitly assumed that the tunnelling probability was 
small. Clearly, this will no longer be the case when Eg is zero or negative. The correct 



3064 R S Markiewicz 

transmission coefficient can be found by keeping the wave function properly normalized to 
unity f161: 

1 p = -  
1 + e s ’  

Thus, when EF = E,, P = i, independent of magnetic field. As the magnetic field 
increases, there is significant transmission over an ever increasing range of energies away 
from the VHS. Figure 4 shows plots of P versus E ,  for several values of magnetic field. Note 
that P has the form of a Fermi function, with E ,  playing the role of chemical potential, 
and hw,/2rr the temperature. 

. 
Figure 4. The transmission probability P at a switching orbit, for a uxiery of magnetic fields. 
(All fields and energies s d e d  ta a common field. BO.) 

Equation (5) is essentially identical to equation (1.2) of FH. In order to compare the 
results, the following identifications must be made: for FH’S U,, U,, U, = U, = h2/2m*12. 
so FH’S El z hwJ2. 

2.2. Conventional magnetic breakdown 

At the same point that the orbital switching mechanism is becoming important, the 
conventional breakdown mechanism is exponentially suppressed. To see this, it is convenient 
to follow Dykhne’s formalism 1171. The breakdown amplitude is the product of three 
processes (figure 3(c)): namely breakdown from the left-hand orbit to the lens orbit. I , ;  
transmission across the lens orbit, represented as $6; and a second breakdown from the lens 
to the right-hand orbit, tz. The resulting probability amplitude can be written 

pmb = tt (e” + rj r2rmd + . . . ) t2 
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where the ri are the corresponding reflection coefficients, and the terms in the parentheses 
account for multiple ‘internal reflections’. The exponential suppression is contained in 
both of the breakdown steps; for convenience, only a single breakdown will be considered, 
rmb = t ,  = t*. 

The details of the calculation are given in appendix B. The amplitude for interband 
tunnelling may be expressed in a form similar to equation (2a) ,  tmb = exp(-&,b), but with 

where 0 is a numerical factor calculated in appendix B. Away from the switching point, 
p - O(I), and the tunnelling probability is equivalent to that found by Blount [9] .  However, 
near the switching point ,9 diverges, being ultimately cut off by higher-order terms, and at 
the switching point ,9 r= m, thereby greatly reducing the probability of conventional 
magnetic breakdown. 

2.3. Competition of two tunnelling channels 

The distinction between conventional magnetic breakdown and orbital switching can best 
be understood by comparing (2b) and (BI). These may be written schematically as 

That is, orbital switching (os) corresponds to tunnelling in space, and magnetic breakdown 
(mb) to tunnelling in energy. The two modes are associated with the two forms of the 
uncertainty principle, 

Ax Ap 2 hj2  AE At 3 hj2.  

An analogous situation arises in variable-range hopping [IS]. There, a competition 
arises between direct space tunnelling (long-range hopping) and energy activation to the 
mobility edge. The anomalous temperature dependence of the hopping conductivity arises 
from optimization of the hopping range between these two competing tunnelling paths. The 
magnetic breakdown problem differs in that the range is essentially fixed by the interorbital 
separation, and the energy activation is not to a mobility edge, but to another orbital. 

3. Consequences of the switching orbit 

3.1. Switching latfice 

It might be thought that orbit switching or magnetic breakdown would lead to strong 
electronic disorder. For instance, for the orbits of figure 2(b), it appears that w,r < irj4 
(with r a scattering time), since an electron is scattered each time it reaches a switching 
point. In fact, Pippard [SI has shown that this is not the case. When wcr’ >> 1 (with 
r’ the scattering time exclusive of switching point scattering), the tunnelling produces a 
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quantum coherent structure: there is a well defined magnetic band structure, associated with 
a magnetic superlattice. (Pippard analysed in detail only the case in which the magnetic 
field was ‘commensurate’ with the real-space lattice.) For ordinary magnetic breakdown, 
the transmission probability is strongly field dependent, T - exp(-Bo/B), so this lattice 
only exists in a limited range of magnetic fields. Moreover, magnetic breakdown is usually 
observed in three-dimensional metals, where it involves only a small fraction of the Fermi 
surface. leaving a large background of carriers not involved in the breakdown orbits. Hence, 
coherent magnetic breakdown has only occasionally been observed experimentally [ 191. 

In contrast, T at the switching point is 5, independent of field (until true magnetic 
breakdown across VG becomes significant), so the ‘switching lattice’ will persist out to 
quite high fields, 0,s >> 1. Moreover, in a quasi-two-dimensional lattice, the switching 
will involve nearly all the conduction electrons, leading to inherently larger effects with 
weaker backgrounds [20]. The disadvantage is that, since the vHs occurs near a half filled 
band, the effective masses will be close to a free electron mass, or even somewhat larger, 
necessitating the use of very high magnetic fields. Nevertheless, these fields do not seem 
out of the range of current capabilities [21]. For the model of figure 2, the energy dispersion 
in the switching lattice is calculated in appendix C. 

3.2. Excitonic effects and anomalous Hall effect 

The presence of switching orbits at the vHs was pointed out earlier [22]. and some of the 
consequences noted: there is a simultaneous presence of electron-like and hole-like orbits 
at the Fermi level, leading to unusual excitonic effects [23]; and the switching leads to 
anomalous values for the Hall coefficient 1201. The Hall effect is known to be anomalous in 
the cuprate superconductors: whereas photoemission finds evidence for large (‘Luttinger’) 
Fermi surfaces, the measured Hall density only corresponds to the excess holes beyond half 
filling of the band. A low-field Hall effect calculation 1201 suggests that the switching orbit, 
coupled with strong correlation effects, may be able to account for this anomaly. 

4. Discussion 

4.1. Weakly coupled chains 

Away from a switching point, all of the orbits are closed in k-space. and hence the real-space 
orbitals (1) are all localized in a strong field. In contrast, at a switching orbit, the electron 
can follow an open orbit path which percolates throughout momentum space and, hence, 
throughout real space. In particular, figure 5, an expanded view of figure 2(b), illustrates 
the existence of quasi-10 orbitals. 

This suggests a novel interpretation for orbital switching. At a point at which orbital 
switching occurs, the two-dimensional band can be thought of as composed of MV 

interpenetrating, weakly coupled chains. Thus, the dotted and dashed orbitals in figure 
5 represent two essentially ID chains, at right angles to each other. Clearly, the whole 
lattice can be represented as a superposition of such chains. A similar association of the 
vHs with one dimensionality was made earlier [24]. 

Anderson [25] has suggested that such a state could have important consequences for 
high-Tc superconductivity. He has pointed out that, due to correlation effects, I D  metals have 
a number of highly anomalous properties, including separation of spin and charge degrees 
of freedom, which could lead to a novel form of superconductivity. In trying to extend 
models of these ‘Luttinger liquids’ to two dimensions, he has suggested that correlation 
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Figure 5. An interpretation of switching orbit in terms of weakly coupled chains. The dashed 
and dotted lines show two interpenetrating, essentially ID orbits, at right angles to each other. 

effects can make interchain hopping irrelevant [25],  so the resulting weakly coupled chains 
will retain the characteristic features of a Luttinger liquid. 

The present result suggests that such weakly coupled chains arise naturally, but only in 
the middle of a 2D band, due to the presence of vHs switching orbits. It may be that near the 
exfrema of the band, interchain hopping remains relevant, its importance enhanced because 
the DOS of a ID band diverges at the top and bottom of the band (due to ID VHS). 

4.2. VHS scattering in zerofield 

Orbital switching is inherently easier to analyse in a magnetic field, because the field forces 
the carriers to navel along well defined orbits, with the tunnelling occuring at precise 
turning points of the orbits. However, since orbital switching persists to zero field, it can 
also be thermally activated. That is, there will be an additional scattering mechanism 
present for carriers near the VHS of the Fermi surface. Moreover, phonons can cause 
inter-vas switching in addition to the single-vHs switching discussed above. For these 
reasons, the present discussion is limited to magnetic field dependence, both to introduce 
the phenomenon of orbital switching and to clarify the distinction between switching and 
magnetic breakdown. Nevertheless. there is evidence in the high-T, cuprates for coherent 
electron-phonon coupling, in the form of dynamic Jahn-Teller effects [24]. A description 
of these effects in terms of phonon-assisted orbital switching is currently being prepared. 
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Appendix A. Band dispersion near the vHs 

In the high-temperature superconducting cuprates, the CuO2 antibonding band is often 
represented in a tight-binding model, with dispersion 
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Here, A is the Cu-0 bare energy separation, tc.0 is the Cu-0 hopping energy, and a is the 
in-plane lattice constant. The vHs corresponds to (kx,  k,)  = (0, n). or 

Near the vHs (k ,  - 0, k ,  = 71 - k;), the energy may be expanded as 

Using the values A - 4 eV, rcuo - 1.3 eV, a = 3.8 A, m* is close to the free electron 
value. Correlation effects tend to reduce the Cu-0 hopping, tcuo, and hence to enhance m'. 

Appendix B. Conventional magnetic breakdown near a u H s  

In this appendix, the calculation of the tunnelling matrix element imb of figure 3(c) is 
presented. Following Dykhne [17], fmb can be written as earlier, but with 

where E+ are the energies of the two bands, and rc is the (imaginary) time it takes to go 
from one to the other. 

To calculate 6, it is necessary to know the extrapolation of E to complex values. In 
general, the degeneracy point will usually be associated with a point of conical intersection. 
In the present spirit of nearly free electron bands, the following model suggests itself 
(however, the final result is not sensitive to the details of the model). Where two Fermi 
surface sections of figure 1 or 2 overlap, umklapp scattering will introduce a gap. The 
resulting wave function will be a combination of 

(B2) i(k+G+r Q = ckeik.' + ck+G,e 

with GI = ( G L , ~ ) ,  and all vectors are two dimensional. The eigenenergies are given by 
the roots of 

with A.+ = Rzk2/2m, and U, the interband coupling energy. Letting k, = G1/2 - K ~ .  the 
energies are 

E * = E o f E i  ( B 4 4  
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with 

EO = hZ[(G1/2)* + K: + k:]/2m 

ha = h2Gy/2m, 

and 

To transform from time to wave number, use the equation of motion 

with w, = e B / m c .  Thus. 
dKx dt = - 

mckyo 
where k,o is the value of k,  at the gap (figure 3(c)). The interband tunnelling is accomplished 
by letting K~ (or t )  take on imaginary values ranging from 0 to iK', with 

(i.e., with E1 = 0). Carrying out the integral, equation (Bl) now yields 

xU:GI 
hwcWso  

S =  

Equation (B8) is essentially equivalent to the Blount result. Thus, the energy gap is 
VG = 2UI,  so by identifying the Fermi energy as EF cz h ~ ,  equation (B8) becomes 

with fi  = G1/4k,o. For f i  = 1, this expression exactly agrees with Blount's version. 
However, as the orbital switch is approached, kyo 3 0, f3 + w, and the ordinary breakdown 
mechanism is strongly suppressed. In this limit, a finite tunnelling probability can be restored 
by a higher-order approximation for equation (B5) .  For a circular nearly free electron orbit, 
k, = ( G ~ / ~ ) c o s ( w , ~ ) ,  SO 

K~ = (G1/2)(1 -cos(o,t)) E (Gl/4)(~,t)~ 
near the switching orbit. Substituting this in (Bl), (B4) yields 

with 
I 

90 = (1 - x 4 )  dx = (&/3)K(l/&) Y 1.180 

with K the complete elliptic integral of the first kind. Thus, up to a small numerical factor, 
the divergent quantity Gl/k ,o  is replaced by the large but finite m. Therefore, near 
the orbital switch, the space-like tunnelling, equation (41, is expected to dominate over the 
energy-space tunnelling, equation (B9). 
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Appendix C. Magnetic band structure a t  the VI% 

The 'switching lattice' energy dispersion may be calculated, following the calculations of 
Pippard [SI for magnetic breakdown. It is assumed that scattering by impurities, phonons, etc 
(i.e., all scattering except that associated with the switching points) is negligible, oCzr >> 1. 
In this limit, an electron in a strong magnetic field follows a well defined semiclassical orbit, 
with the phase of the wave function increasing in proportion to the area swept out divided by 
the magnetic area, li = hc/eB. At a switching point, this unique characterization breaks 
down, and the electron entering a switching point has two possible paths: i t  'can either 
emerge on the 'same' orbit, with probability amplitude q ,  or switch to an alternative orbit, 
with probability amplitude p .  Pippard IS] makes the conventional choice of taking Q as a 
real number, and 

p = ipo = im. 

Thus, in figure 6, the wavefunctions on any branch of the orbit can be uniquely specified 
with respect to the wavefunctions at the centre points of the branches, A, B, C, and D. 

Figure C1. Definition of arc centra (A-D) and orbit areas (1.8, and 0. the entire cell) for use 
in calculation of the 'switching lattice' energy dispersion. 

An equation relating the wavefunction at B to those at A and C can be found by 
following the time evolution of the wavefunction backwards from point B: 

(Cia) Be-'< = qAeit + pCe i(f f6-4. 

The phase factors in this equation have the following origins. The term 5 = A t / [ ;  is the 
phase picked up by moving from A to the switching point, corresponding to the area labelled 

in figure 6 (with analogous areas for branches B, C). Here A t  is the real-space area of 
the orbit section. The term o, = k,a, is an extra phase picked up by shifting from point C 
to the equivalent point in the next cell, with as = h a  the length of the magnetic supercell 
(a is the cell parameter of the atomic lattice, and m is an integer specifying the size of 



Van Hove singuiarities and orbital switching 3071 

the magnetic supercell, discussed further below). The factor S must be introduced due to 
a gauge transformation associated with switching the orbit centre [8]. and corresponds to 
the area 6 in figure 6. (The vector potential can be written A = (B x ~112.  When P is 
idcntified as the centre of a given orbit, the electronic phase is given by the area swept out, 
as described above. However, any change in the orbit centre is equivalent to redefining 
A-i.e., is a gauge transformation.) 

Equivalent equations can be written for the other wavefunctions: 

Ce-ft = q ~ e %  + pDei(B+s+Wd (CW 

( C W  Ae-'t = qDeii + p B e  Xtfs-o,). 

This system of equations can be solved when the magnetic field is commensurate-that 
is. when the crystallographic unit cell contains a magnetic Rux equal to 1/2m of a flux 
quantum hc/e ,  where m is an integer. Equivalently, the magnetic unit cell has an area 
equal to 2m times that of the crystallographic cell. For a commensurate field, the phase 
corresponding to a circuit of the entire Brillouin zone is S2 = 4xm, so 6 = S2/4 = Am 
and Se = (1 + x)n/Z, where x is the equivalent hole doping (i.e., x = 0 coresponds to a 
half-filled band, x = 1 to the whole band filled with holes). 

In this commensurate case, equation (Cl) is a 4 x 4 matrix equation, and the dispersion 
of the magnetic bands is found by equating the determinant of this matrix to zero. This 
yields 

sin(nmx) 
4PO 

cos(k,a,) + cos(kyas) = - 

where p,, = m, Note that for x = 0, this is very similar to the usual equation for the 
Fermi surface associated with the vHs in zero field, 

cos(k,a) + cos(k,a) = 0. 
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